Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
China Journal of Chinese Materia Medica ; (24): 3651-3658, 2020.
Article in Chinese | WPRIM | ID: wpr-828402

ABSTRACT

As an important substitute for agarwood, mountain-agarwood, belonging to the family Oleaceae, comes from the root, stem and thick branch of Syringa pinnatifolia, which has a wide range of application in Inner Mongolia, China. It has good clinical efficacy in the use of cardiovascular diseases. However, the formation speed of mountain-agarwood is extremely slow, and its cultivated seedlings have low resin content. Therefore, how to speed up the formation of mountain-agarwood and increase the resin content is a hot research topic in this field. In this work, 16 S rDNA amplicon sequencing method was used to systematically analyze the bacterial communities of different samples of mountain-agarwood. Our data revealed that the samples of mountain-agarwood had more obvious species diversity than the ones of non-mountain-agarwood, especially the wild mountain-agarwood samples. By analysis of bacterial community composition and species abundance, Sphingomonas, Modestobacter and unidentified Cyanobacteria genus were three dominant bacterial genera in all samples. In addition, there are two identified genera of dominant bacteria, namely Actinoplanes and Microbacterium in both wild and cultivated mountain-agarwood, by bacterial community composition and species richness analysis. Meanwhile, Roseomonas was the dominant bacterial genus in both wild and cultivated non-mountain-agarwood samples. Our work could provides basic data for exploring the mechanism of the mountain-agarwood formation, and help to exploit resource of endophytic bacteria reasonably.


Subject(s)
Bacteria , Genetics , China , DNA, Ribosomal , Resins, Plant , Thymelaeaceae
2.
Braz. j. biol ; 79(4): 594-602, Nov. 2019. tab, graf
Article in English | LILACS | ID: biblio-1001493

ABSTRACT

Abstract Didelphis albiventris are found throughout Northeast and Central Brazil to central-southern Uruguay and it was subject of few studies in a population level. Given this, the present study investigated the genetic variability of the species using the mitochondrial molecular marker cytochrome oxidase c subunit I. We analyzed samples from the different biomes within three Brazilian regions: Northeast (Caatinga , Cerrado, and Atlantic Forest), Southeast (Cerrado , Atlantic Forest, Cerrado/Atlantic Forest, and Cerrado/Caatinga ecotones) and South (Pampa and Atlantic Forest). Software BAPs retrieved five distinct demes: dm 1, dm 2, and dm 5 that occurs in South, Northeast and Southeast regions respectively and the dm 3 and dm 4 are wide distributed in Northeast and Southeast. Population analysis performed with AMOVA, haplotype network and Mantel test estimated the veracity of the demes. The FST shows structuring for the five demes, with dm 1 (South region) isolated from the others, however the other analysis showed the Northeast/Southeast demes (dm 2-5) united, diagnosing gene flow between them, mainly at the transitional zones, in areas as far away as areas with similar latitude interval (Southeast vs South) that was not detected gene flow. In the haplotype network, the mutational steps was conclusive in split dm1 from dm 2-5 with 15 mutational steps and the Mantel test was moderated, which is explained by genetic similarity despite the great geographic distances (Northeast/Southeast). Thus, our analysis recognized two different lineages (South and Northeast/Southeast) and indicate that the biomes were not decisive in their isolation. The sharing of demes at the transitional zones and in areas with high latitudinal intervals reflects a recent ancestral polymorphism for D. albiventris. The plasticity in the occupation of the space by this species contributes in its wide dispersion capability, that is, geographical distribution. Our results revealed important implications for the management of D. albiventris in these transitional zones areas where demes were shared.


Resumo Didelphis albiventris é encontrada em todo o Nordeste e região central do Brasil até o centro-sul do Uruguai e foi alvo de poucos estudos em nível populacional. Dessa forma, o presente estudo, investiga a variabilidade genética da espécie usando o marcador molecular citocromo c oxidase subunidade I. Analisou-se amostras de diferentes biomas de três regiões brasileiras: Nordeste (Caatinga, Cerrado e Floresta Atlântica), Sudeste (Cerrado, Floresta Atlântica, ecótonos Cerrado/Floresta Atlântica e Cerrado/Caatinga) e Sul (Pampa e Floresta Atlântica). O software BAPs recuperou cinco demes distintos: dm 1, dm 2 e dm 5, que ocorrem nas regiões Sul, Nordeste e Sudeste, respectivamente, e os dm 3 e dm 4, que são amplamente distribuído no Nordeste e Sudeste. Análises populacionais realizadas com AMOVA, rede de haplótipo e teste de Mantel estimaram a veracidade das demes. O FST mostrou estruturação para as cinco demes, com dm 1 (região Sul) isolada das demais, entretanto as outras análises mostraram as demes Nordeste/Sudeste (dm 2-5) unidos, diagnosticando fluxo gênico entre elas, principalmente em zonas de transição, em áreas tão distante quanto áreas com similar intervalo de latitude (Sudeste e Sul), onde não foram detectado fluxo gênico. Na rede de haplótipo, os passos mutacionais foram conclusivos em separar dm 1 do dm 2-5 com 15 passos mutacionais, e o teste de Mantel foi moderado, o que é explicado pela similaridade genética apesar da grande distância geográfica (Nordeste/Sudeste). Assim, duas linhagens diferentes (Sul e Sudeste/Nordeste) foram encontradas, indicando que os biomas não foram decisivos em seus isolamentos. Os compartilhamentos das demes, em zonas de transição e em áreas com elevados intervalos de latitude, refletem um polimorfismo ancestral recente para D. albiventris. A plasticidade na ocupação do espaço por esta espécie contribui em sua ampla capacidade de dispersão, ou seja, distribuição geográfica. Nossos resultados revelam importantes implicações para o manejo de D. albiventris nessas áreas de zonas de transição, onde as demes são compartilhadas.


Subject(s)
Animals , Genetic Variation , Didelphis/genetics , Brazil , Electron Transport Complex IV/analysis
3.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1467223

ABSTRACT

Abstract Didelphis albiventris are found throughout Northeast and Central Brazil to central-southern Uruguay and it was subject of few studies in a population level. Given this, the present study investigated the genetic variability of the species using the mitochondrial molecular marker cytochrome oxidase c subunit I. We analyzed samples from the different biomes within three Brazilian regions: Northeast (Caatinga , Cerrado, and Atlantic Forest), Southeast (Cerrado , Atlantic Forest, Cerrado/Atlantic Forest, and Cerrado/Caatinga ecotones) and South (Pampa and Atlantic Forest). Software BAPs retrieved five distinct demes: dm 1, dm 2, and dm 5 that occurs in South, Northeast and Southeast regions respectively and the dm 3 and dm 4 are wide distributed in Northeast and Southeast. Population analysis performed with AMOVA, haplotype network and Mantel test estimated the veracity of the demes. The FST shows structuring for the five demes, with dm 1 (South region) isolated from the others, however the other analysis showed the Northeast/Southeast demes (dm 2-5) united, diagnosing gene flow between them, mainly at the transitional zones, in areas as far away as areas with similar latitude interval (Southeast vs South) that was not detected gene flow. In the haplotype network, the mutational steps was conclusive in split dm1 from dm 2-5 with 15 mutational steps and the Mantel test was moderated, which is explained by genetic similarity despite the great geographic distances (Northeast/Southeast). Thus, our analysis recognized two different lineages (South and Northeast/Southeast) and indicate that the biomes were not decisive in their isolation. The sharing of demes at the transitional zones and in areas with high latitudinal intervals reflects a recent ancestral polymorphism for D. albiventris. The plasticity in the occupation of the space by this species contributes in its wide dispersion capability, that is, geographical distribution. Our results revealed important implications for the management of D. albiventris in these transitional zones areas where demes were shared.


Resumo Didelphis albiventris é encontrada em todo o Nordeste e região central do Brasil até o centro-sul do Uruguai e foi alvo de poucos estudos em nível populacional. Dessa forma, o presente estudo, investiga a variabilidade genética da espécie usando o marcador molecular citocromo c oxidase subunidade I. Analisou-se amostras de diferentes biomas de três regiões brasileiras: Nordeste (Caatinga, Cerrado e Floresta Atlântica), Sudeste (Cerrado, Floresta Atlântica, ecótonos Cerrado/Floresta Atlântica e Cerrado/Caatinga) e Sul (Pampa e Floresta Atlântica). O software BAPs recuperou cinco demes distintos: dm 1, dm 2 e dm 5, que ocorrem nas regiões Sul, Nordeste e Sudeste, respectivamente, e os dm 3 e dm 4, que são amplamente distribuído no Nordeste e Sudeste. Análises populacionais realizadas com AMOVA, rede de haplótipo e teste de Mantel estimaram a veracidade das demes. O FST mostrou estruturação para as cinco demes, com dm 1 (região Sul) isolada das demais, entretanto as outras análises mostraram as demes Nordeste/Sudeste (dm 2-5) unidos, diagnosticando fluxo gênico entre elas, principalmente em zonas de transição, em áreas tão distante quanto áreas com similar intervalo de latitude (Sudeste e Sul), onde não foram detectado fluxo gênico. Na rede de haplótipo, os passos mutacionais foram conclusivos em separar dm 1 do dm 2-5 com 15 passos mutacionais, e o teste de Mantel foi moderado, o que é explicado pela similaridade genética apesar da grande distância geográfica (Nordeste/Sudeste). Assim, duas linhagens diferentes (Sul e Sudeste/Nordeste) foram encontradas, indicando que os biomas não foram decisivos em seus isolamentos. Os compartilhamentos das demes, em zonas de transição e em áreas com elevados intervalos de latitude, refletem um polimorfismo ancestral recente para D. albiventris. A plasticidade na ocupação do espaço por esta espécie contribui em sua ampla capacidade de dispersão, ou seja, distribuição geográfica. Nossos resultados revelam importantes implicações para o manejo de D. albiventris nessas áreas de zonas de transição, onde as demes são compartilhadas.

4.
Genet. mol. biol ; 34(3): 377-385, 2011. graf, tab
Article in English | LILACS | ID: lil-595995

ABSTRACT

The vitamin D receptor (VDR) is an essential protein related to bone metabolism. Some VDR alleles are differentially distributed among ethnic populations and display variable patterns of linkage disequilibrium (LD). In this study, 200 unrelated Brazilians were genotyped using 21 VDR single nucleotide polymorphisms (SNPs) and 28 ancestry informative markers. The patterns of LD and haplotype distribution were compared among Brazilian and the HapMap populations of African (YRI), European (CEU) and Asian (JPT+CHB) origins. Conditional regression and haplotype-specific analysis were performed using estimates of individual genetic ancestry in Brazilians as a quantitative trait. Similar patterns of LD were observed in the 5' and 3' gene regions. However, the frequency distribution of haplotype blocks varied among populations. Conditional regression analysis identified haplotypes associated with European and Amerindian ancestry, but not with the proportion of African ancestry. Individual ancestry estimates were associated with VDR haplotypes. These findings reinforce the need to correct for population stratification when performing genetic association studies in admixed populations.


Subject(s)
Humans , Brazil , HapMap Project , Polymorphism, Genetic , Population Characteristics , Vitamin D
5.
Braz. j. med. biol. res ; 43(7): 677-680, July 2010. graf, tab
Article in English | LILACS | ID: lil-550738

ABSTRACT

A 3-bp insertion/deletion polymorphism in intron 6 of GSTM3 (rs1799735, GSTM3*A/*B) affects the activity of the phase 2 xenobiotic metabolizing enzyme GSTM3 and has been associated with increased cancer risk. The GSTM3*B allele is rare or absent in Southeast Asians, occurs in 5-20 percent of Europeans but was detected in 80 percent of Bantu from South Africa. The wide genetic diversity among Africans led us to investigate whether the high frequency of GSTM3*B prevailed in other sub-Saharan African populations. In 168 healthy individuals from Angola, Mozambique and the São Tomé e Príncipe islands, the GSTM3*B allele was three times more frequent (0.74-0.78) than the GSTM3*A allele (0.22-0.26), with no significant differences in allele frequency across the three groups. We combined these data with previously published results to carry out a multidimensional scaling analysis, which provided a visualization of the worldwide population affinities based on the GSTM3 *A/*B polymorphism.


Subject(s)
Female , Humans , Male , Gene Frequency/genetics , Glutathione Transferase/genetics , Polymorphism, Genetic/genetics , Africa South of the Sahara , Genotype , Polymorphism, Restriction Fragment Length
6.
Electron. j. biotechnol ; 12(3): 2-3, July 2009. ilus, tab
Article in English | LILACS | ID: lil-551880

ABSTRACT

Botrytis cinerea is a necrotrophic pathogen causing pre- and post-harvest diseases in at least 235 plant species. It manifests extraordinary genotype and phenotype variation. One of the causes of this variation is transposable elements. Two transposable elements have been discovered in this fungus, the retrotransposon (Boty), and the transposon (Flipper). In this work, two complete (Boty-II-76 and Boty-II-103) and two partial (Boty-II-95 and Boty-II-141) long terminal repeat (LTR) retrotransposons were identified by an in silico genomic sequence analysis. Boty-II-76 and Boty-II-103 contain 6439 bp nucleotides with a pair of LTRs at both ends, and an internal deduced pol gene encoding a polyprotein with reverse transcriptase and DDE integrase domains. They are flanked by 5 bp direct repeats (ACCAT, CTTTC). In Boty-II-141, two LTRs at both ends, and a partial internal pol gene encoding a protein with a DDE integrase domain were identified. In Boty-II-95, a right LTR and a partial internal pol gene encoding a protein with no conserved domains were identified. Boty-II uses a self-priming mechanism to initiate synthesis of reverse transcripts. The sequence of the presumed primer binding site for first-strand reverse transcription is 5’-TTGTACCAT-3’. The polypurine-rich sequence for plus-strand DNA synthesis is 5’-GCCTTGAGCGGGGGGTAC-3’. Fourteen Boty-II LTRs that contain 125-158 bp nucleotides and share 69.1 ~ 100 percent identities with the short inverted terminal repeats of 5 bp (TGTCA…TGACA) were discovered. Analysis of structural features and phylogeny revealed that Boty-II is a novel LTR retrotransposon. It could potentially be used as a novel molecular marker for the investigation of genetic variation in B. cinerea.


Subject(s)
Botrytis/isolation & purification , Botrytis/genetics , Botrytis/chemistry , Retroelements/genetics , Genetic Variation , Genome, Plant/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/chemistry
7.
Microbiology ; (12)1992.
Article in Chinese | WPRIM | ID: wpr-541261

ABSTRACT

Marine bacteria from the samples of sea sediments and seawater were directly plated on isolation media and the biodiversity of isolates was examined with DNA fingerprinting.542 single colonies were obtained from the media.ARDRA with enzyme Hinf I revealed 16 operational taxonomic units(OTU) which were dominated by OTU5 group which accounts for 19 isolates,and OTU7 group which accounts for 11 isolates.The biodiversity of isolates from these two dominant OTU groups was further investigated by a genomic fingerprinting technique, ERIC-PCR.The results indicated that there were 12 different ERIC-PCR types present among the OTU5 group while only 4 among the OTU7.The data indicated rich diversity profiles of marine microorganisms were presented in the East China Sea.

SELECTION OF CITATIONS
SEARCH DETAIL